Skip to main content
Log in

Phylogenetic Analyses of Teleki Grapevine Rootstocks Using Three Chloroplast DNA Markers

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Teleki rootstocks are used in grapevine-producing countries all over the world. They represent one of the largest groups of available rootstocks but their origin is still in dispute although they have been regarded as Vitis berlandieri × V. riparia hybrids. To investigate their possible origin, we amplified and sequenced three chloroplast regions, two non-coding spacers (trnL-F, trnS-G) and the trnL group I intron in a core collection of Teleki rootstocks representing widespread accessions and related wild North American grape species (V. berlandieri, V. riparia and V. rupestris). Concatenated sequence data coupled with microstructural changes discovered in the chloroplast regions provided data to trace the maternal ancestry of the Teleki lines. All chloroplast regions showed both nucleotide and length variation. Length mutations in the non-coding regions represented mostly simple sequence repeats of poly-A and -T stretches. These indel characters exhibited additional diversity comparable with the nucleotide diversity and increased resolution of the phylogenetic trees. We found that a group of Teleki accessions position together with the wild grape species V. riparia. Another group of Teleki rootstocks formed a sister group to the other North American species V. berlandieri. These clades had moderate support values, and they do not share ancestry with other accessions of Teleki rootstocks resolved with high support value in the V. riparia clade. It seems that Teleki-Kober 5BB and 125 AA accessions might have a V. berlandieri maternal background. We also found great differences within putative clones of Teleki 5C and Teleki-Kober 5BB suggesting that the selection of these accessions was performed on heterogenous or mislabeled plant material collectively maintained under these names.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–f
Fig. 2
Fig. 3
Fig. 4
Fig. 5a,b

Similar content being viewed by others

References

  • Adam-Blondon AF, Roux C, Claux D, Butterlin G, Merdinoglu D, This P (2004) Mapping 245 SSR markers on the Vitis vinifera genome: a tool for grape genetics. Theor Appl Genet 109:1448–1458

    Article  CAS  Google Scholar 

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723

    Article  Google Scholar 

  • Aradhya M, Koehmstedt A, Prins BH, Dangl GS, Stover E (2008) Genetic structure, differentiation, and phylogeny of the genus Vitis: implications for genetic conservation. Acta Hortic 799:43–49

    CAS  Google Scholar 

  • Arroyo-García R, Lefort F, de Andrés MR, Ibánez J, Borrego J, Jouve N, Cabello F, Martínez-Zapater JM (2002) Chloroplast microsatellite polymorphisms in Vitis species. Genome 45:1142–1149

    Article  PubMed  Google Scholar 

  • Bakonyi K, Kocsis L (2004) Teleki Zsigmond élete és munkássága. University of Veszprém, Keszthely, p 64

    Google Scholar 

  • Borsch T, Hilu KW, Quandt D, Wilde V, Neinhuis C, Barthlott W (2003) Noncoding plastid trnT-trnF sequences reveal a well resolved phylogeny of basal angiosperms. J Mol Evol 16:558–576

    CAS  Google Scholar 

  • Boubals D (1954) Les nematodes parasites de la vigne. Progr Agr Et Vit 141(173–182):204–207

    Google Scholar 

  • Boubals D (1979) Situation des porte-greffes resistant aux nematodes ravageurs directs. Bull de L’OIV 52–578:263–271

    Google Scholar 

  • Bouquet A, Dalmasso A (1976) Comportement d’une collection de porte-greffes de vignes en presence d’une population de nematodes (Meloidogyne sp.) originaire du Sud-ouest de la France. Conn Vigne Vin 10:161–174

    Google Scholar 

  • Bourquin J-C, Otten L, Walter B (1991) Identification of grapevine rootstocks by RFLP. C R Acad Sci Paris 312:593–598

    CAS  Google Scholar 

  • Bowers J, Boursiquot JM, This P, Chu K, Johansson H, Meredith C (1999a) Historical genetics: the parentage of Chardonnay, Gamay, and other wine grapes of northeastern France. Science 285:1562–1565

    Article  PubMed  CAS  Google Scholar 

  • Bowers JE, Dangl GS, Meredith CP (1999b) Development and characterization of additional microsatellite DNA markers for grape. Am J Enol Vitic 50:243–246

    CAS  Google Scholar 

  • Bredemeijer GMM, Cooke R, Ganal M, Peeters R, Isaac P, Nordijk Y, Rendell S, Jackson J, Röder MS, Wendehake K et al (2002) Construction and testing of a microsatellite database containing more than 500 tomato varieties. Theor Appl Genet 105:1019–1026

    Article  PubMed  Google Scholar 

  • Cabezas JA, Ibanez J, Lijavetzky D, Velez D, Bravo G, Rodriguez V, Carreno I, Jermakowa AM, Carreno J, Ruiz-Garcia L et al (2011) A 48 SNP set for grapevine cultivar identification. BMC Plant Biol 11:153

    Article  PubMed  CAS  Google Scholar 

  • Carimi F, Mercati F, Michele RD, Fiore MC, Riccardi P, Sunseri F (2011) Intra-varietal genetic diversity of the grapevine (Vitis vinifera L.) cultivar ‘Nero d’Avola’ as revealed by microsatellite markers. Genet Resour Crop Evol 58:967–975

    Article  Google Scholar 

  • Carvalho A, Guedes-Pinto H, Lima-Birto JE (2012) Genetic diversity in old portugese durum sheat cultivars assessed by retrotransposon-based markers. Plant Mol Biol Rep 30:578–589

    Article  Google Scholar 

  • Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552

    Article  PubMed  CAS  Google Scholar 

  • Cseh A, Taller J, Podmaniczky P, Kocsis L (2006) Comparative analysis of the most widespread grapevine rootstock lines in the world, the Teleki lines, with microsatellite markers. Cereal Res Commun 34:773–776

    Article  Google Scholar 

  • Doyle JJ, Doyle JA (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Dunn CW, Hejnol A, Matus DQ, Pang K, Browne WE, Smith SA, Seaver E, Rouse GW, Obst M, Edgecombe GD et al (2008) Broad phylogenomic sampling improves resolution of the animal tree of life. Nature 452:745–749

    Article  PubMed  CAS  Google Scholar 

  • Dzhambazova T, Hvarleva T, Hadjinicoli A, Tsvetkov I, Atanassov A, Atanassov I (2007) Characterization of grapevine rootstocks using microsatellite markers. Biotechnol Biotechnol Equip 21:58–62

    CAS  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  PubMed  CAS  Google Scholar 

  • Farris JS (1989) The retention index and rescaled consistency index. Cladistics 5:417–419

    Article  Google Scholar 

  • Farris JS, Albert V, Källersjö M, Lipscomb D, Kluge AG (1996) Parsimony jackknifing outperforms neighbor-joining. Cladistics 12:99–124

    Article  Google Scholar 

  • Fatahi R, Ebadi A, Bassil N, Mehlenbacher SA, Zamani Z (2003) Characterization of Iranian grapevine cultivars using microsatellite markers. Vitis 42:185–192

    CAS  Google Scholar 

  • Fisher BM, Salakhutdinov I, Akkurt M, Eibach R, Edwards KJ, Topfer R, Zyprian EM (2004) Quantitative trait locus analysis of fungal disease resistance factors on a molecular map of grapevine. Theor Appl Genet 108:501–515

    Article  CAS  Google Scholar 

  • Fossati T, Labra M, Castiglione S, Failla O, Scienza A, Sala F (2001) The use of AFLP and SSR molecular markers to decipher homonyms and synonyms in grapevine cultivars: the case of the varietal group known as ‘Schiave’. Theor Appl Genet 102:200–205

    Article  CAS  Google Scholar 

  • Galet P (1947) Resistance des porte-greffes a la chlorose. Prog Agr Et Vit 36:128–133

    Google Scholar 

  • Galet P (1967) Recherches sur les methods d’identification et de classification des Vitacees des zones temperees. II. These presentee a la Facalte des Sciences de Montpellier. University de Montpellier, France

    Google Scholar 

  • Goloboff PA (1994) NONA: a tree searching program. Program and documentation. www.cladistics.com/aboutNona.htm

  • Grando MS, Frisinghelli C (1998) Grape microsatellite markers: sizing of DNA alleles and genotype analysis of some grapevine cultivars. Vitis 37:79–82

    Google Scholar 

  • Granett J, Walker MA, Kocsis L, Omer AD (2001) Biology and management of grape Phylloxera. Annu Rev Entomol 46:387–412

    Article  PubMed  CAS  Google Scholar 

  • Guetat A, Vilatersana R, Neffati M, Boussaid M (2010) Genetic diversity in Tunisian rosy garlic populations (Allium roseum L.) as evidenced by chloroplast DNA analysis: sequence variation of non-coding region and intergenic spacers. Biochem Syst Ecol 38:502–509

    Article  CAS  Google Scholar 

  • Hamilton MB (1999) Four primer pairs for the amplification of chloroplast intergenic regions with intraspecific variation. Mol Ecol 8:513–525

    Article  Google Scholar 

  • Hand ML, Cogan NOI, Forster JW (2012) Molecular characterization and interpretation of genetic diversity within globally distributed germplasm collections of tall fescue (Festuca arundinacea Schreb.) and meadow fescue (F. pratensis Huds.). Theor Appl Genet 124(6):1127–1137. doi:10.1007/s00122-011-1774-6

  • Harris AR (1983) Resistance of some Vitis rootstocks to Xiphnema index. J Nematol 15:405–409

    PubMed  CAS  Google Scholar 

  • Hasegawa M, Kishino H, Yano T (1985) Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22:160–174

    Article  PubMed  CAS  Google Scholar 

  • Hong L, Walker MA (1998) Identifying rootstocks with simple sequence repeat (SSR) DNA markers. Am J Enol Vitic 49:403–407

    Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

    Article  PubMed  CAS  Google Scholar 

  • Hvarleva T, Rusanov K, Lefort F, Tsvetkov I, Atanassov A, Atanassov I (2004) Genotyping of Bulgarian Vitis vinifera L. cultivars by microsatellite analysis. Vitis 43:27–34

    CAS  Google Scholar 

  • Ishii T, McCouch SR (2000) Microsatellites and microsynteny in the chloroplast genomes of Oryza and eight other Gramineae species. Theor Appl Genet 100:1257–1266

    Article  CAS  Google Scholar 

  • Jahnke G, Májer J, Lakatos A, Györffyné Molnár J, Deák E, Stefanovits-Bányai É, Varga P (2009) Isozyme and microsatellite analysis of Vitis vinifera L. varieties from the Hungarian grape germplasm. Sci Hortic 120:213–221

    Article  CAS  Google Scholar 

  • Jahnke G, Kocsisné Molnár G, Májer J, Szöke B, Tarczal E, Varga P, Kocsis L (2012) Analysis of grape rootstocks by SSR markers. J Int Sci Vigne Vin 45:199–210

    Google Scholar 

  • Jansen RK, Kaittanis C, Saski C, Lee S-B, Tomkins J, Alverson AJ, Daniell H (2006) Phylogenetic analysis of Vitis (Vitaceae) based on complete chloroplast genome sequences: effects of taxon sampling and phylogenetic methods on resolving relationships among rosids. BMC Evol Boil 6:32

    Article  CAS  Google Scholar 

  • Jin Y (1997) Resistance to the dagger nematode, Xiphinema index: screening trials and the inheritance of RAPD markers. MSc Thesis, University of California, Davis

  • Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism. Academic, New York, pp 21–132

    Google Scholar 

  • Khan A, Khan IA, Heinze B, Azim MK (2012) The chloroplast genome sequence of date palm (Phoenix dactylifera L. cv.‘Aseel’). Plant Mol Biol Rep 30:666–678

    Article  CAS  Google Scholar 

  • Kluge AG, Farris JS (1969) Quantitative phyletics and the evolution of anurans. Syst Zool 18:1–32

    Article  Google Scholar 

  • Kocsis L, Lehoczky E (2000) The effect of the graperootstock-scion interaction on the Potassium and Calcium content of the leaves in connection with yield production. Commun Soil Sci Plant 31:2283–2289

    Article  CAS  Google Scholar 

  • Kuhsel MG, Strickland R, Palmer JD (1990) An ancient group I intron shared by eubacteria and chloroplasts. Science 250:1570–1573

    Article  PubMed  CAS  Google Scholar 

  • Labra M, Winfield M, Ghiani A, Grassi F, Sala F, Scienza A, Failla O (2001) Genetic studies on Trebbiano and morphologically related varieties by SSR and AFLP markers. Vitis 40:187–190

    CAS  Google Scholar 

  • Levadoux L, Boubals D, Rives M (1962) Le genre Vitis et ses especes. Ann Amelior Plant 12:19–44

    Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  PubMed  CAS  Google Scholar 

  • Lowe KM, Walker MA (2006) Genetic linkage map of the interspecific grape rootstock cross Ramsey (Vitis champinii) × Riparia Gloire (Vitis riparia). Theor Appl Genet 112:1582–1592

    Article  PubMed  CAS  Google Scholar 

  • Mandoulakani BA, Piri Y, Darishzadeh R, Bernoosi I, Jafari M (2012) Retrotransposon insertion polymorphism and genetic diversity in Medicago sativa populations revealed by IRAP and REMAP markers. Plant Mol Biol Rep 30:286–296

    Article  CAS  Google Scholar 

  • Manty F (2005) Hintergründe zur Entstehung der Bezeichnungen der Unterlagenselektionen von Sigmund Teleki und Franz Kober. Dtsch Weinbau Jahrb 57:159–164

    Google Scholar 

  • McLeRoy SS, Renfro RE (2008) Grape man of Texas—Thomas Volney Munson—the origins of American viticulture. Wine Appreciation Guild, San Francisco, pp 76–77, 334

    Google Scholar 

  • Moor MO (1991) Classification and systematics of eastern North American Vitis L. Vitaceae north of Mexico. Sida Contrib Bot 14:339–367

    Google Scholar 

  • Moravcová K, Baránek M, Pidra M (2006) Use of SSR markers to identify grapevine cultivars registered in the Czech Republic. J Int Sci Vigne Vin 40:71–80

    Google Scholar 

  • Müller K (2005) SeqState—primer design and sequence statistics for phylogenetic DNA data sets. Appl Bioinf 4:65–69

    Article  Google Scholar 

  • Nei M, Tajima F (1983) Maximum likelihood estimation of the number of nucleotide substitutions from restriction sites data. Genetics 105:207–217

    PubMed  CAS  Google Scholar 

  • Nichols SA, Barnes PAG (2005) A molecular phylogeny and historical biogeography of the marine sponge genus Placospongia (Phylum Porifera) indicate low dispersal capabilities and widespread crypsis. J Exp Marine Biol Ecol 323:1–15

    Article  Google Scholar 

  • Nixon KC (2002) Winclada. Version 1.00.08. http://www.cladistics.com/aboutWinc.htm., Ithaca, NY

  • Nylander JAA, Wilgenbusch JC, Warren DL, Swofford DL (2008) AWTY (are we there yet?): a system for graphical exploration of MCMC convergence in Bayesian phylogenetics. Bioinformatics 24:581–583

    Article  PubMed  CAS  Google Scholar 

  • Ogihara Y, Isono K, Kojima T, Endo A, Hanaoka M, Shiina T, Terachi T, Utsugi S, Murata M, Mori N et al (2000) Chinese spring wheat (Triticum aestivum L.) chloroplast genome: complete sequence and contig clones. Plant Mol Biol Rep 18:243–253

    Article  CAS  Google Scholar 

  • Ovesná J, Kučera L, Vaculová K, Milotová J, Snape J, Wenzl P, Huttner E, Kilian A, Martelli G, Milella L (2012) Analysis of the genetic structure of a barley collection using DNA diversity array technology (DArT). Plant Mol Biol Rep. doi:10.1007/s11105-012-0491-x

  • Péros J-P, Berger G, Portemont A, Boursiqout J-M, Lacombe T (2011) Genetic variation and biogeography of the disjunct Vitis subg. Vitis (Vitaceae). J Biogeogr 38:471–486

    Article  Google Scholar 

  • Poczai P, Taller J, Szabó I (2009) Molecular genetic study on a historical Solanum (Solanaceae) herbarium specimen collected by Paulus Kitaibel in the 18th century. Acta Bot Hung 51:337–346

    Article  CAS  Google Scholar 

  • Podmaniczky P, Cseh A, Taller J, Kocsis L, Győrffyné Jahnke G (2006) Genetic differences among rootstocks derived from the Teleki’s seedlings. Acta Hortic 827:183–186

    Google Scholar 

  • Pongrácz DD (1988) Rootstocks for grape-vines. Philip, Cape Town

    Google Scholar 

  • Provan J, Russel JR, Booth A, Powell W (1999) Polymorphic chloroplast simple sequence repeat primers for systematic and population studies in the genus Hordeum. Mol Ecol 8:505–511

    Article  PubMed  CAS  Google Scholar 

  • Rambaut A, Drummond AJ (2007) Tracer v1.4, http://tree.bio.ed.ac.uk/software/tracer/ (accessed 25 February 2012)

  • Ren H, Lu L-M, Soejima A, Luke Q, Zhang D-X, Chen Z-D, Wen J (2011) Phylogenetic analysis of the grape family (Vitaceae) based on the noncoding plastid trnC-petN, trnH-psbA, and trnL-F sequences. Taxon 60:629–637

    Google Scholar 

  • Renouf V, Tregoat O, Roby JP, Van Leeuwen C (2010) Soils, rootstocks and grapevine varieties in prestigious Bordeaux vineyards and their impact on yield and quality. J Int Sci Vigne Vin 44:1–8

    Google Scholar 

  • Riaz S, Dangl GS, Edwards KJ, Meredith CP (2004) A microsatellite marker based framework linkage map of Vitis vinifera L. Theor Appl Genet 108:864–872

    Article  PubMed  CAS  Google Scholar 

  • Röder MS, Wendehake K, Korzun V, Bredemeijer G, Laborie D, Bertrand L, Isaac P, Rendell S, Jackson J, Cooke RJ et al (2002) Construction and analysis of microsatellite-based database of European wheat varieties. Theor Appl Genet 106:67–73

    PubMed  Google Scholar 

  • Rossetto M, Jackes BR, Kristen DS, Henry RJ (2001) Intergeneric relationships in the Australian Vitacea: new evidence from cpDNA analysis. Genet Resour Crop Evol 48:307–314

    Article  Google Scholar 

  • Santibanez JM (1983) Contribution a l’etude de la resistance des Vitacees aux nematodes, Doctoral thesis, Montpellier, p 46

  • Saski C, Lee S, Daniell H, Wood T, Tomkins J, Kim H-G, Jansen RK (2005) Complete chloroplast genome sequence of Glycine max and comparative analyses with other legume genomes. Plant Mol Biol 59:309–322

    Article  PubMed  CAS  Google Scholar 

  • Sauer MR (1967) Root-knot tolerance in some grapevine rootstocks. Austr J Agric Anim Husb 7:580–583

    Article  Google Scholar 

  • Schmidt J, Manty F, Cousins P (2009) Collecting Vitis berlandieri from native habitat sites. Acta Hortic 827:151–153

    Google Scholar 

  • Sefc KM, Regner F, Glossl J, Steinkellner H (1998a) Genotyping of grapevine and rootstock cultivars using microsatellite markers. Vitis 37:15–20

    Google Scholar 

  • Sefc KM, Steinkellner H, Glößl J, Kampfer S, Regner F (1998b) Reconstruction of grapevine pedigree by microsatellite analysis. Theor Appl Genet 97:227–231

    Article  Google Scholar 

  • Silvestro D, Michalak I (2012) raxmlGUI: a graphical front-end for RAxML. Org Divers Evol. doi:10.1007/s13127-011-0056-0

  • Simmons MP, Ochoterena H (2000) Gaps as characters in sequence-based phylogenetic analyses. Syst Biol 49:369–381

    Article  PubMed  CAS  Google Scholar 

  • Simmons MP, Müller K, Norton AP (2007) The relative performance of indel-coding methods in simulations. Mol Phylogenet Evol 44:724–740

    Article  PubMed  CAS  Google Scholar 

  • Simon D, Fewer D, Friedl T, Bhattacharya D (2003) Phylogeny and self-splicing ability of the plastid tRNA-Leu group I intron. J Mol Evol 57:710–720

    Article  PubMed  CAS  Google Scholar 

  • Snyder E (1936) Susceptibility of grape rootstocks to rot-knot nematode. USDA Cir 405:1–16

    Google Scholar 

  • Snyder E (1937) Grape development and improvement. USDA Yearbook of Agriculture, pp 631–664

  • Soejima A, Wen J (2006) Phylogenetic analysis of the grape family (Vitaceae) based on three chloroplast markers. Am J Bot 93:278–287

    Article  PubMed  CAS  Google Scholar 

  • Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analysis with thousands of taxa and mixed models. Bioinformatics 22:2688–2690

    Article  PubMed  CAS  Google Scholar 

  • Stöver BC, Müller KF (2010) TreeGraph2: combining and visualizing evidence from different phylogenetic analyses. BMC Bioinforma 11:7

    Article  Google Scholar 

  • Taberlet P, Gielly L, Pautou G, Bouvet J (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol Biol 17:1105–1109

    Article  PubMed  CAS  Google Scholar 

  • Taberlet P, Coissac E, Pompanon F, Gielly L, Miquel C, Valentini A, Vermat T, Corthier G, Brochmann C, Willerslev E (2007) Power and limitations of the chloroplast trnL (UAA) intron for plant DNA barcoding. Nucleic Acids Res 35:e14

    Article  PubMed  CAS  Google Scholar 

  • Tajima F (1989) The effect of change in population size on DNA polymorphism. Genetics 123:597–601

    PubMed  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:271–2739

    Article  CAS  Google Scholar 

  • Teleki A (1927) Der moderne Weinbau—Die rekonstruktion der Weingärten. Hertleben, Wien und Leipzig

  • This P, Jung A, Boccacci P, Borrego J, Botta R, Costantini L, Crespan M, Dangl GS, Eisenheld C, Ferreira-Monteiro F et al (2004) Development of a standard set of microsatellite reference alleles for identification of grape cultivars. Theor Appl Genet 109:1448–1458

    Article  PubMed  CAS  Google Scholar 

  • Tröndle D, Schröder S, Kassemeyer H-H, Kiefer C, Koch MA, Nick P (2010) Molecular phylogeny of the genus Vitis (Vitaceae) based on plastid markers. Am J Bot 97:1168–1178

    Article  PubMed  CAS  Google Scholar 

  • Upadhyay A, Saboji MD, Reddy S, Deokar K, Karibasappa GS (2007) AFLP and SSR marker analysis of grape rootstocks in Indian grape germplasm. Sci Hortic 112:176–183

    Article  CAS  Google Scholar 

  • Vouillamoz J, Maigre D, Meredith CP (2004) Microsatellite analysis of ancient alpine grape cultivars: pedigree reconstruction of Vitis vinifera L. ‘Cornalin du Valais’. Theor Appl Genet 107:448–454

    Article  CAS  Google Scholar 

  • Wakasugi T, Sugita M, Tsuduki T, Sugiura M (1998) Updated gene map of tobacco chloroplast DNA. Plant Mol Biol Rep 16:231–241

    Article  CAS  Google Scholar 

  • Walker MA, Boursiquot JM (1992) Ampelographic and isozyme data correcting the misnaming of the grape rootstock S04 at the University of California, Davis. Am J Enol Vitic 43:261–265

    CAS  Google Scholar 

  • Walker MA, Liu L (1995) The use of isozymes to identify 60 grapevine rootstocks (Vitis spp.). Am J Enol Vitic 46:299–305

    CAS  Google Scholar 

  • Wang X, Ren G, Li X, Tu J, Lin Z, Zhang X (2012) Development and evaluation of intron and insertion-deletion markers for Gossypium barbadense. Plant Mol Biol Rep 30:605–613

    Article  CAS  Google Scholar 

  • Watterson GA (1975) On the number of segregating sites in genetical models without recombination. Theor Popul Biol 7:256–276

    Article  PubMed  CAS  Google Scholar 

  • Weising K, Gradner RC (1999) A set of conserved PCR primers for the analysis of simple sequence repeat polymorphisms in chloroplast genomes of dicotyledonous angiosperms. Genome 42:9–19

    Article  PubMed  CAS  Google Scholar 

  • Won H, Renner SS (2005) The chloroplast trnT-trnF region in the seed plant lineage Gnetales. J Mol Evol 61:425–436

    Article  PubMed  CAS  Google Scholar 

  • Xu H, Wilson DJ, Arulsekar S, Bakalinsky AT (1995) Sequence-specific polymerase chain-reaction markers derived from randomly amplified polymorphic DNA markers for fingerprinting grape (Vitis) rootstocks. J Am Soc Hortic Sci 120:714–720

    CAS  Google Scholar 

  • Zalapa JE, Price DL, Kaeppler SM, Tobias CM, Okada M, Casler MD (2011) Hierarchical classification of switchgrass genotypes using SSR and chloroplast sequences: ecotype, ploidies, gene pools, and cultivars. Theor Appl Genet 122:805–817

    Article  PubMed  CAS  Google Scholar 

  • Zecca G, Abbott JR, Sun W-B, Spada A, Sala F, Grassi F (2012) The timing and the mode of evolution of wild grapes (Vitis). Mol Phylogenet Evol 62:736–747

    Article  PubMed  Google Scholar 

  • Zurawski G, Clegg MT (1984) The barley chloroplast DNA atpBE, trnM2, and trnV1 loci. Nucleic Acids Res 12:2549–2559

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Thanks are due to Kinga Klára Mátyás for laboratory assistance, Nándorné Nagy and Tamás Lönhard for field collections. We also thank Ildikó Varga for her help preparing the figures. This work was supported by the Hungarian Scientific Research Fund (project no. K73708). Peter Poczai gratefully acknowledges support from the Mare Curie Fellowship Grant (PIEF-GA-2011-300186) under the seventh framework program of the European Union.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Péter Poczai.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

Information on the origin, genetic background of accessions and GenBank accession numbers for the sequenced chloroplast regions used in this study. *The region includes the trnL intron and the trnL-trnF spacer region under one accession number. (DOCX 30 kb)

Supplementary Table 2

Concatenated MUSCLE sequence alignment. (DOC 2453 kb)

Supplementary Table 3

Concatenated GBlocks sequence alignment. (DOC 1936 kb)

Supplementary Table 4

List of microstructural changes found in the trnL-trnF and trnS-trnG chloroplast regions (DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poczai, P., Hyvönen, J., Taller, J. et al. Phylogenetic Analyses of Teleki Grapevine Rootstocks Using Three Chloroplast DNA Markers. Plant Mol Biol Rep 31, 371–386 (2013). https://doi.org/10.1007/s11105-012-0512-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-012-0512-9

Keywords

Navigation