Skip to main content
Log in

The Synthesis of Bromobutyl Rubbers with Desired Allylic Bromide Structures and Mechanism Suggestion

  • MODIFICATION OF POLYMERS
  • Published:
Polymer Science, Series B Aims and scope Submit manuscript

Abstract

Bromobutyl rubbers with desired allylic bromide structures were synthesized by solution and bulk reaction, and the microstructures of resulted products were explained. It was found that in the presence of NaOH aqueous, β-Br structure was strongly predominant (about 80%), which is in consistence with literature. In this paper, a greatly increased and a varied content of α-Br structure (66–79%) for bromobutyl rubber was obtained when the brominating reaction was carried out in an acidic environment in which NaOH aqueous was not used. When the brominating was carried out in bulk also in an acidic environment, a predominant α-Br structure (72%) was obtained again. The advanced performance could be expected due to big curing ability of α-Br structure unit in bromobutyl rubber. The brominating reactivity of both cis- and trans-isoprene units was investigated thoroughly in acidic and basic conditions. The brominated butyl rubbers with different allylic bromide structures were synthesized easily according to this study. The transformation of different microstructures was also studied and the possible mechanism was suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. W. Feng, A. I. Isayev, and E. V. Meerwall, Polymer 45, 8459 (2004).

    Article  CAS  Google Scholar 

  2. J. J. Su, C. Zhang, J. Li, J. R. Zhao, and Y. Feng, Rubber Chem. Technol. 88, 628 (2015).

    Article  Google Scholar 

  3. J. Wu, G. Huang, Q. Pan, J. Zheng, Y. Zhu, and B. J. P. Wang, Polymer 48, 7653 (2007).

    Article  CAS  Google Scholar 

  4. N. Ashok, M. Balachandran, F. Lawrence, and N. Sebastian, J. Appl. Polym. Sci. 134, 45195 (2017).

    Article  Google Scholar 

  5. H. Lian, S. Li, K. Liu, L. Xu, K. Wang, and W. Guo, Polym. Eng. Sci. 51, 2254 (2011).

    Article  CAS  Google Scholar 

  6. Y. Ikeda, Y. Nakamura, K. Kajiwara, and S. Kohjiya, J. Polym. Sci., Part A: Polym. Chem. 33, 2657 (1995).

    Article  CAS  Google Scholar 

  7. R. Vukov, Rubber Chem. Technol. 57, 275 (1984).

    Article  CAS  Google Scholar 

  8. R. Chandra, V. Subhash, and A. K. Verma, Polymer 23, 1457 (1982).

    Article  CAS  Google Scholar 

  9. P. J. Flory, Ind. Eng. Chem. 38, 417 (1946).

    Article  CAS  Google Scholar 

  10. J. S. Parent, S. Malmberg, J. K. Mclean, and R. A. Whitney, Eur. Polym. J. 46, 702 (2010).

    Article  CAS  Google Scholar 

  11. Z. G. Grigoruk, N. V. Abramova, and Y. N. Orlov, Polym. Sci., Ser. B 51, 497 (2009).

    Article  Google Scholar 

  12. Z. G. Grigoruk, Y. N. Orlov, S. V. Levanova, and N. V. Abramova, Russ. J. Appl. Chem. 84, 1993 (2011).

    Article  CAS  Google Scholar 

  13. R. Cao, X. Zhao, X. Zhao, X. Wu, and L. Zhang, Ind. Eng. Chem. Res. 58, 16645 (2019).

    Article  CAS  Google Scholar 

  14. J. K. McLean, S. A. Guillen-Castellanos, J. S. Parent, R. A. Whitney, and R. Resendes, Eur. Polym. J. 43, 4619 (2007).

    Article  CAS  Google Scholar 

  15. M. Suckow, A. Mordvinkin, M. Roy, N. K. Singha, and G. Heinrich, Macromolecules 51, 468 (2017).

    Article  Google Scholar 

  16. S. M. Malmberg, J. S. Parent, D. A. Pratt, and R. A. Whitney, Macromolecules 43, 8456 (2010).

    Article  CAS  Google Scholar 

  17. R. J. Pazur and I. Petrov, Polym. Degrad. Stab. 121, 311 (2015).

    Article  CAS  Google Scholar 

  18. S. Stein, A. Mordvinkin, B. Voit, H. Komber, K. Saalwchter, and F. Böhme, Polym. Chem. 11, 1188 (2020).

    Article  CAS  Google Scholar 

  19. Z. G. Grigoruk, Y. N. Orlov, S. V. Levanova and N. V. Abramova, Russ. J. Appl. Chem. 83, 1880 (2010).

    Article  CAS  Google Scholar 

  20. C. Y. Chu, K. N. Watson, and R. Vukov, Rubber Chem. Technol. 60, 636 (1987).

    Article  CAS  Google Scholar 

  21. D. M. Cheng, I. J. Gardner, H. C. Wang, C. B. Frederick, A. H. Dekmezian, and P. Hous, Rubber Chem. Technol. 63, 265 (1990).

    Article  CAS  Google Scholar 

  22. J. S. Parent, D. J. Thom, G. White, R. A. Whitney, and W. Hopkins, J. Polym. Sci., Part A: Polym. Chem. 39, 2019 (2001).

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by Key Laboratory of Rubber-Plastics, Ministry of Education, QUST, Qingdao 266042, Shandong, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Feng.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao Wang, Wei, X., Zou, M. et al. The Synthesis of Bromobutyl Rubbers with Desired Allylic Bromide Structures and Mechanism Suggestion. Polym. Sci. Ser. B 64, 651–656 (2022). https://doi.org/10.1134/S1560090422700543

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560090422700543

Navigation