Skip to main content

Duckweeds for the Production of Therapeutic Proteins

  • Chapter
  • First Online:
Exploring Plant Cells for the Production of Compounds of Interest

Abstract

The production of various biopharmaceuticals in transgenic plants (biofarming) is becoming an increasingly popular trend in modern biotechnology. To date, the expression of recombinant proteins in transgenic plants is becoming a powerful alternative to classical expression methods. This is due to the fact that the use of plant expression systems can provide a significant reduction in the cost of recombinant protein production. The main efforts in the field of genetic engineering of Lemnaceae were aimed at obtaining plants-producers for the production of recombinant proteins for various functional purposes, primarily medical. Plants expressing monoclonal antibodies, viral and bacterial antigens, and various therapeutic and industrial proteins have already been obtained. Their biological activity has been confirmed, and researches in the field of the extraction and purification of target proteins have begun. Moreover, some efforts have already been directed at the development of the methods for humanizing the glycosylation of recombinant antibodies in transgenic plants-producers. Given the current progress and pace of development of research in various areas of Lemnaceae biology, we have no doubt that in the near future, we can expect the emergence of efficient and competitive duckweed-based expression systems for the production of recombinant proteins for various purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akter M, Chowdhury SD, Akter Y, Khatun MA (2011) Effect of duckweed (Lemna minor) meal in the diet of laying en and their performance. Bangladesh Res Publ J 5:252–261

    Google Scholar 

  • An D, Li C, Zhou Y, Wu Y, Wang W (2018) Genomes and transcriptomes of duckweeds. Front Chem 6:230. https://doi.org/10.3389/fchem.2018.00230. eCollection 2018

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Anderson KE, Lowman Z, Stomp AM, Chang J (2011) Duckweed as a feed ingredient in laying hen diets and its effect on egg production and composition. Int J Poult Sci 10:4–7

    Article  CAS  Google Scholar 

  • Ansal MD, Dhawan A, Kaur VI (2010) Duckweed based bioremediation of village ponds – an ecologically and economically viable integrated approach for rural development through aquaculture. Livestock Res Rural Dev 22(7) http://www.lrrd.org/lrrd22/7/ansa22129.htm. Accessed 7 June 2019

  • Appenroth KJ, Lam E (2012) Duckweed as crop plants. Biol UnsererZeit 42:181–187

    Article  Google Scholar 

  • Appenroth KJ, Augsten H, Liebermann B, Feist H (1982) Effects of light quality on amino acid composition of proteins in Wolffia arrhiza (L.) WIMM. Using a specially modified Bradford method. Biochem Physiol Pflanz 177:251–258

    Article  CAS  Google Scholar 

  • Appenroth KJ, Teller S, Horn M (1996) Photophysiology of turion formation and germination in Spirodela polyrhiza. Biol Plant 38:95–106

    Article  Google Scholar 

  • Appenroth KJ, Borisjuk N, Lam E (2013) Telling duckweed apart: genotyping technologies for Lemnaceae. Chin J App Environ Biol 19:1–10

    Article  CAS  Google Scholar 

  • Appenroth KJ, Sree KS, Fakhoorian T, Lam E (2015) Resurgence of duckweed research and applications: report from the 3rd International duckweed conference. Plant Mol Biol 89:647–654

    Article  PubMed  CAS  Google Scholar 

  • Armstrong WP, Thorne RF (1984) The genus Wolffia (Lemnaceae) in California. Madrono 31:171–179

    Google Scholar 

  • Barros GO, Woodard SL, Nikolov ZL (2011) Phenolics removal from transgenic Lemna minor extracts expressing mAb and impact on mAb production cost. Biotechnol Prog 27(2):410–418

    Article  PubMed  CAS  Google Scholar 

  • Bergmann BA, Cheng J, Classen J, Stomp AM (2000) In vitro selection of duckweed geographical isolates for potential use in swine lagoon effluent renovation. Bioresour Technol 73:13–20

    Article  CAS  Google Scholar 

  • Bertran K, Moresco K, Swayne DE (2015) Impact of vaccination on infection with Vietnam H5N1 high pathogenicity avian influenza virus in hens and the eggs they lay. Vaccine 33:1324–1330

    Article  CAS  PubMed  Google Scholar 

  • Boehm R, Kruse C, Voeste D, Barth S, Schnabl H (2001) A transient transformation system for duckweed (Wolffia columbiana) using Agrobacterium-mediated gene transfer. J Appl Bot Angewandte Botanik 75:107–111

    Google Scholar 

  • Cantó-Pastor A, Mollá-Morales A, Ernst E, Dahl W, Zhai J, Yan Y, Meyers BC, Shanklin J, Martienssen R (2015) Efficient transformation and artificial miRNA gene silencing in Lemna minor. Plant Biol (Stuttg) 17(1):59–65

    Article  CAS  Google Scholar 

  • Chang WC, Chiu PL (1976) Induction of callus from fronds of duckweed (Lemna gibba L.). Bot Bull Acad Sinica 17:106–109

    Google Scholar 

  • Chang WC, Chiu PL (1978) Regeneration of Lemna gibba G3 through callus culture. Zeitschriftfschriftfür Pflanzenph 89:91–94

    Article  CAS  Google Scholar 

  • Chang SM, Yang CC, Sung SC (1977) The cultivation and the nutritional value of Lemnaceae. Bull Inst Math Acad Sin 24:19–30

    CAS  Google Scholar 

  • Chaudhary E, Sharma P (2014a) Use of duckweed in wastewater treatment. Int J Innov Res Sci Eng Technol 3:13622–13624

    Google Scholar 

  • Chaudhary E, Sharma P (2014b) Praveen Sharma duckweed as ecofriendly tool for phytoremediation. Int J Sci Res (IJSR) 3(6):1615–1617

    Google Scholar 

  • Cheng JJ, Stomp AM (2009) Growing duckweed to recover nutrients from wastewaters and for production of fuel ethanol and animal feed. CleanRooms 37:17–26

    CAS  Google Scholar 

  • Chhabra G, Chaudhary D, Sainger M, Jaiwal PK (2011) Genetic transformation of Indian isolate of Lemna minor mediated by Agrobacterium tumefaciens and recovery of transgenic plants. Physiol Mol Biol Plants 17:129–136

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cox KM, Sterling JD, Regan JT, Gasdaska JR, Frantz KK, Peele CG, Black A, Passmore D, Moldovan-Loomis C, Srinivasan M, Cuison S, Cardarelli PM, Dickey LF (2006) Glycan optimization of a human monoclonal antibody in the aquatic plant Lemna minor. Nat Biotechnol 24(12):1591–1597

    Article  CAS  PubMed  Google Scholar 

  • Cronquist A (1988) The evolution and classification of flowering plants, 2nd edn. New York Botanic Gardens, Bronx

    Google Scholar 

  • Cui W, Cheng JJ (2015) Growing duckweed for biofuel production: a review. Plant Biol 17(1):16–23

    Article  PubMed  Google Scholar 

  • Davis JI (1995) A phylogenetic structure for the monocotyledons, as inferred from chloroplast DNA restriction site variation, and a comparison of measures of clade support. Syst Bot 20:503–527

    Article  Google Scholar 

  • Dickey LF, Gasdaska JR, Cox KM, Peele CG, Spencer D (2009) Expression of monoclonal antibodies in duckweed. United States Patent US7632983B2

    Google Scholar 

  • Dickey LF, Gasdaska JR, Cox KM (2011) Expression of biologically active polypeptides in duckweed. United States Patent US20060195946A1

    Google Scholar 

  • Edelman M, Perl A, Flaishman M, Blumenthal A (1998) Transgenic Lemnaceae. Australian Patent Publication AU759570C

    Google Scholar 

  • Everett KM, Dickey L, Parsons J, Loranger R, Wingate V (2012) Development of a plant-made pharmaceutical production platform. Bioprocess Int 10:16–25

    CAS  Google Scholar 

  • Firsov A, Tarasenko I, Mitiouchkina T, Ismailova N, Shaloiko L, Vainstein A, Dolgov S (2015) High-yeld expression of M2e peptide of avian influenza virus H5N1 in transgenic duckweed plants. Mol Biotechnol 57:653–661

    Article  CAS  PubMed  Google Scholar 

  • Firsov A, Tarasenko I, Mitiouchkina T, Shaloiko L, Kozlov O, Vinokurov L, Rasskazova E, Murashev A, Vainstein A, Dolgov S (2018) Expression and immunogenicity of M2e peptide of avian influenza virus H5N1 fused to ricin toxin b chain produced in duckweed plants. Front Chem 6:22

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Franconi R, Demurtas OC, Massa S (2010) Plant-derived vaccines and other therapeutics produced in contained systems. Expert Rev Vaccines 9(8):877–892

    Article  PubMed  CAS  Google Scholar 

  • French JC, Chung MG, Hur YK (1995) Chloroplast DNA phylogeny of the Ariflorae. In: Rudall PJ, Cribb PJ, Cutler DF, Humphries CJ (eds) Monocotyledons: systematics and evolution, vol 1. Royal Botanic Gardens, Kew, pp 255–275

    Google Scholar 

  • Frick H (1991) Callogenesis and carbohydrate utilization in Lemna minor. J Plant Phyziol 137:397–401

    Article  CAS  Google Scholar 

  • Friedrich AS (2005) Transformation und fermentation von Wolffia spec. Dissertation, Untersuchungen zu Kultivierung. Vorgelegt

    Google Scholar 

  • Gasdaska JR, Spenser D, Dickey L (2003) Advantages of therapeutic protein production in the aquatic plant Lemna. Bio Process J 2:49–56

    Google Scholar 

  • Georgiev MI, Agostini E, Ludwig-Müller J, Xu J (2012) Genetically transformed roots: from plant disease to biotechnological resource. Trends Biotechnol 30(10):528–537

    Article  PubMed  CAS  Google Scholar 

  • Ghosh M, Huynh D, Sodhi SS, Sharma N, Kim JH, Kim N, Mongre RK, Park WP, Shin HS, Ko S, Oh S, Choi CW, Oh SJ, Jeong D (2018) Impact of a novel phytase derived from Aspergillus nidulans and expressed in transgenic Lemna minor on the performance, mineralization in bone and phosphorous excretion in laying hens. Pak Vet J 35(3):360–364

    Google Scholar 

  • Gurusamy PD, Ramamoorthy HSS, Wink M (2017) Biologically active recombinant human erythropoietin expressed in hairy root cultures and regenerated plantlets of Nicotiana tabacum L. PLoS One 12(8):e0182367

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hassan MS, Edwards P (1992) Evaluation of duckweed (Lemna perpusilla and Spirodela polyrhiza) as feed for Nile tilapia (Oreochromis niloticus). Aquaculture 104:315–326

    Article  Google Scholar 

  • Heenatigala PPM, Yang J, Bishopp A, Sun Z, Li G, Kumar S, Hu S, Wu Z, Lin W, Yao L, Duan P, Hou H (2018) Development of efficient protocols for stable and transient gene transformation for Wolffia Globosa using agrobacterium. Front Chem 6:227

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hoang PNT, Michael TP, Gilbert S, Chu P, Motley ST, Appenroth KJ, Schubert I, Lam E (2018) Generating a high-confidence reference genome map of the Greater Duckweed by integration of cytogenomic, optical mapping, and Oxford Nanopore technologies. Plant J 96(3):670–684

    Article  PubMed  CAS  Google Scholar 

  • Hutchinson J (1973) The families of flowering plants, arranged according to a new system based on their probable phylogeny. 2 vols (3rd ed.). Oxford University Press

    Google Scholar 

  • Jain SK, Gujral GS, Jha NK, Vasudevan P (1992) Production of biogas from Azolla pinnata R.Br and Lemna minor L.: effect of heavy metal contamination. Bioresour Technol 41:273–277

    Article  CAS  Google Scholar 

  • Karpiscak MM, Gerba CP, Watt PM, Foster KE, Falabi JA (1996) Multi-species systems for wastewater quality improvements and habitat enhancement. Water Sci Technol 33(11):231–236

    Article  CAS  Google Scholar 

  • Kaufman J, Kalaitzandonakes N (2011) The economic potential of plant-made pharmaceuticals in the manufacture of biologic pharmaceuticals. J Commer Biotechnol 17:173–182

    Article  Google Scholar 

  • Khvatkov PA, Chernobrovkina MA, Sinyov VV, Dolgov SV (2013) Study on conditions for Wolffia arrhiza (L.) Horkel ex Wimm submerged culturing in a modified bioreactor. Biotekhnologiya (Moscow) 6:51–56. (in Russian, with English abstract)

    Google Scholar 

  • Khvatkov P, Chernobrovkina M, Okuneva A, Pushin A, Dolgov S (2015a) Transformation of Wolffia arrhiza (L.) Horkel ex Wimm. Plant Cell Tiss Org Cult 123:299–307

    Article  CAS  Google Scholar 

  • Khvatkov P, Chernobrovkina M, Okuneva A, Shvedova A, Chaban I, Dolgov S (2015b) Callus induction and regeneration in Wolffia arrhiza (L.) Horkel ex Wimm. Plant Cell Tissue Organ Cult 120:263–273

    Article  CAS  Google Scholar 

  • Khvatkov P, Firsov A, Shvedova A, Shaloiko L, Kozlov O, Chernobrovkina M, Pushin A, Tarasenko I, Chaban I, Dolgov S (2018) Development of Wolffia arrhiza as a producer for recombinant human granulocyte colony-stimulating factor. Front Chem 6:304

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Khvatkov P, Chernobrovkina M, Okuneva A, Dolgov S (2019) Creation of culture media for efficient duckweeds micropropagation (Wolffia arrhiza and Lemna minor) using artificial mathematical optimization models. Plant Cell Tissue Organ Cult 136:85–100

    Article  Google Scholar 

  • Kirk D, McIntosh K, Walmsley A, Peterson R (2005) Risk analysis for plant-made vaccines. Transgenic Res 14:449–462

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kittiwongwattana C, Vuttipongchaikij S (2013) Effects of nutrient media on vegetative growth of Lemna minor and Landoltia punctata during in vitro and ex vitro cultivation. Maejo Int J Sci Technol 7(1):60–69

    Google Scholar 

  • Ko SM, Sun HJ, Oh MJ, Song IJ, Kim MJ, Sin HS, Goh CH, Kim YW, Lim PO, Lee HY, Kim SW (2011) Expression of the protective antigen for PEDV in transgenic duckweed, Lemna minor. Hortic Environ Biotechnol 52(5):511–515

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Körner S, Vermaat JE (1998) The relative importance of Lemna Gibba L., bacteria and algae for the nitrogen and phosphorus removal in Duckweed-covered domestic wastewater. Water Res 32(12):3651–3661

    Article  Google Scholar 

  • Kruse C, Boehm R, Veste D, Barth S, Schnabl H (2001) Transient transformation of Wolffia columbiana by particle bombardment. Aquat Bot 72:175–181

    Article  Google Scholar 

  • Kuehdorf K, Appenroth KJ (2012) Influence of salinity and high temperature on turion formation in the duckweed Spirodela polyrhiza. Aquat Bot 97:69–72

    Article  CAS  Google Scholar 

  • Lam E, Appenroth KJ, Michael T, Mori K, Fakhoorian T (2014) Duckweed in bloom: The 2nd international conference on duckweed research and applications heralds the return of a plant model for plant biology. Plant Mol Biol 84:737–742

    Article  PubMed  CAS  Google Scholar 

  • Landolt E (1957) Physiologishe und okologische Untersuchungen an Lemnaceen. Ber Schweiz Bot Ges 67:271–410

    Google Scholar 

  • Landolt E (1986) The family of Lemnaceae – a monographic study. Veroff Geobot Inst ETH, Stiftung Rubel, Zurich 1:417–435

    Google Scholar 

  • Landolt E, Kandeler R (1987) The family of Lemnaceae – a monographic study. Veroeffentlichungen des Geobotanischen Institutes ETH, vol 2. Stiftung Ruebel, Zurich, Switzerland

    Google Scholar 

  • Leng RA (1999) Duckweed: a tiny aquatic plant with enormous potential for agriculture and environment. FAO, Rome (Italy). Animal Production and Health Div. University of Tropical Agriculture Foundation, Phnom Penh (Cambodia). 108 pp

    Google Scholar 

  • Leng RA, Stambolie JH, Bell R (1995) Duckweed – A potential high-protein feed resource for domestic animals and fish. Livest Res Rural Dev 7:36–51

    Google Scholar 

  • Les DH, Crawford DJ (1999) Landoltia (Lemnaceae), A new genus of duckweeds. Novon 9:530–533

    Article  Google Scholar 

  • Les DH, Crawford DJ, Landolt E, John D, Gabel JD, Rebecca KT (2002) Phylogeny and systematics of Lemnaceae, the duckweed family. Syst Bot 27(2):221–240

    Google Scholar 

  • Levard C, Hotze EM, Colman BP, Dale AL, Truong L, Yang XY, Bone AJ, Brown GE, Tanguay JRL, Giulio RTD, Bernhardt ES, Meyer JN, Wiesner MR, Lowry GV (2013) Sulfidation of silver nanoparticles: natural antidote to their toxicity. Environ Sci Technol 47(23):13440–13448

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li J, Jain M, Vunsh R, Vishnevetsky J, Hanania U, Flaishman M, Perl A, Edelman M (2004) Callus induction and regeneration in Spirodela and Lemna. Plant Cell Rep 22:457–464

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Wang Y, Xu S, Tang X, Zhao J, Yu C, Zhou G, He G, Xu H, Wang S, Tang Y, Fu C, Ma Y (2019) Efficient genetic transformation and CRISPR/Cas9-mediated genome editing in Lemna aequinoctialis. Plant Biotechnol J. https://doi.org/10.1111/pbi.13128

  • Men BX, Ogle B, Preston TR (1995) Use of duckweed (Lemna spp) as replacement for soya bean meal in a basal diet of broken rice for fattening ducks. Livest Res Rural Dev 7:3

    Google Scholar 

  • Michael TP, Bryant D, Gutierrez R, Borisjuk N, Chu P, Zhang H, Xia J, Zhou J, Peng H, Baidouri ME, Hallers BT, Hastie AR, Liang T, Acosta K, Gilbert S, McEntee C, Jackson SA, Mockler TC, Zhang W, Lam E (2017) Comprehensive definition of genome features in Spirodela polyrhiza by high-depth physical mapping and short-read DNA sequencing strategies. Plant J 89:617–635

    Article  PubMed  CAS  Google Scholar 

  • Mohedano RA, Costa RHR, Tavares FA, Filho BP (2012) High nutrient removal rate from swine wastes and protein biomass production by full-scale duckweed ponds. Bioresour Technol 112:98–104

    Article  PubMed  CAS  Google Scholar 

  • Moon HK, Stomp AM (1997) Effect of medium components and light on callus induction, growth and frond regeneration in Lemna gibba (duckweed) in vitro. Cell Dev Biol 33:20–22

    Google Scholar 

  • Murthy HN, Wu CH, Cui YY, Paek KY (2014) Production of caffeic acid derivatives from adventitious root cultures of Echinacea purpurea (L.) Moench. In: Paek K-Y et al (eds) Production of biomass and bioactive compounds using bioreactor technology. Springer Science+Business Media Dordrecht. https://doi.org/10.1007/978-94-017-9223-3_8

  • Muztar AJ, Slinger SJ, Burton JH (1979) Metabolizable energy content of freshwater plants in chicken and ducks. Poult Sci 56:1893–1899

    Article  Google Scholar 

  • Park KY, Wi SJ (2016) Potential of plants to produce recombinant protein products. J Plant Biol 59:559–568. https://doi.org/10.1007/s12374-016-0482-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pena L, Oliveira M, Fragoso R, Duarte E (2017) Potential of duckweed for swine wastewater nutrient removal and biomass valorisation through anaerobic co-digestion. J Sustain Dev Energy Water Environ Syst 5(2):127–138

    Article  Google Scholar 

  • Peterson EJR, Ma S, Sherman DR, Baliga NS (2016) Network analysis identifies Rv0324 and Rv0880 as regulators of bedaquiline tolerance in Mycobacterium tuberculosis. Nat Microbiol. article number: 16078. https://doi.org/10.1038/nmicrobiol.2016.78

  • Pipalova I (2003) Grass carp (Ctenopharyngodon idella) grazing on duckweed (Spirodela polyrhiza). Aquac Int 11:325–336

    Article  Google Scholar 

  • Radulovic O, Petrić M, Raspor M, Tadić V, Jovanović P, Zečević V (2019) Assessment of in vitro multiplication of Lemna minor in the presence of phenol: plant/bacteria system for potential bioremediation. Part I Pol J Environ Stud 28(2):803–809

    Article  CAS  Google Scholar 

  • Rival S, Wisniewski JP, Langlais A, Kaplan H, Freyssinet G, Vancanneyt G, Vunsh R, Perl A, Edelman M (2008) Spirodela (duckweed) as an alternative production system for pharmaceuticals: a case study, aprotinin. Transgenic Res 17:503–513

    Article  CAS  PubMed  Google Scholar 

  • Rothwell GW, Van Atta MR, Ballard HE, Stockey RA (2004) Molecular phylogenetic relationships among Lemnaceae and Araceae using the chloroplast trnL-trnF intergenic spacer. Mol Phylogenet Evol 30:378–385

    Article  PubMed  CAS  Google Scholar 

  • Santos RB, Abranches R, Fischer R, Sack M, Holland T (2016) Putting the spotlight back on plant suspension cultures. Front Plant Sci 7:297. https://doi.org/10.3389/fpls.2016.00297

    Article  PubMed  PubMed Central  Google Scholar 

  • Schillberg S, Raven N, Spiegel H, Rasche S, Buntru M (2019) Critical analysis of the commercial potential of plants for the production of recombinant proteins. Front Plant Sci 10:720. https://doi.org/10.3389/fpls.2019.00720

    Article  PubMed  PubMed Central  Google Scholar 

  • Sree KS, Appenroth KJ (2014) Increase of starch accumulation in the duckweed Lemna minor under abiotic stress. Albanian J Agric Sci 13(Special Edition):11–14

    Google Scholar 

  • Sree KS, Adelmann K, Garcia C, Lam E, Appenroth KJ (2015a) Natural variance in salt tolerance and induction of starch accumulation in duckweeds. Planta 241:1395–1404

    Article  PubMed  CAS  Google Scholar 

  • Sree KS, Keresztes Á, Mueller-Roeber B, Brandt R, Eberius M, Fischer W, Appenroth KJ (2015b) Phytotoxicity of cobalt ions on the duckweed Lemna minor – morphology, ion uptake, and starch accumulation. Chemosphere 131:149–156

    Article  PubMed  CAS  Google Scholar 

  • Sree KS, Bog M, Appenroth KJ (2016) Taxonomy of duckweeds (Lemnaceae), potential new crop plants. Emirates J Food Agri 28(5):291–302. https://doi.org/10.9755/ejfa.2016-01-038

    Article  Google Scholar 

  • Stockey RA, Homan GL, Rothwell GW (1997) The fossil Limnobiophyllum scutatum: resolving the phylogeny of Lemnaceae. Am J Bot 84:355–368

    Article  PubMed  CAS  Google Scholar 

  • Stomp AM (2005) The duckweeds: a valuable plant for biomanufacturing. Biotechnol Annu Rev 11:69–99

    Article  CAS  PubMed  Google Scholar 

  • Stomp AM, Rajbhandari N (2000) Genetically engineered duckweed. US Patent 6,040,498

    Google Scholar 

  • Su HF, Zhao Y, Jiang J, Lu QL, Li Q, Luo Y, Zhao H, Wang ML (2014) Use of duckweed (Landoltia punctata) as a fermentation substrate for the production of higher alcohols as biofuels. Energy Fuel 28:3206–3216

    Article  CAS  Google Scholar 

  • Sun Y, Cheng JJ, Himmel ME, Skory CD, Adney WS, Thomas SR, Tisserat B, Nishimura Y, Yamamoto YT (2007) Expression and characterization of Acidothermus cellulolyticus E1 endoglucanase in transgenic duckweed Lemna minor 8627. Bioresour Technol 98:2866–2872

    Article  PubMed  CAS  Google Scholar 

  • Thorne RT (1992) Classification and geography of the flowering plants. Bot Rev 58:225–348

    Article  Google Scholar 

  • Thu PTL, Nguyen HA, Huong PT, Nguyen TH, Ham HL (2010) Improvement of transformation procedure into duckweed (Wolffia sp.) via Agrobacterium tumefaciens. Tạpchí Côngnghệ Sinhhọc 8:53–60

    Google Scholar 

  • Thu PTL, Huong PT, Tien VV, Ham HL (2015) Regeneration and transformation of gene encoding the hemagglutinin antigen of the H5N1 virus in frond of duckweed (Spirodela polyrhiza L.). J Agri Stud 3(1):48–59

    Google Scholar 

  • Tusé D, Tu T, McDonald KA (2014) Manufacturing economics of plant-made biologics: case studies in therapeutic and industrial enzymes. Biomed Res Int. Article ID 256135. https://doi.org/10.1155/2014/256135

  • Van der Steen P, Brenner A, Van Buuren J, Oron G (1999) Post-treatment of USAB reactor effluent in an integrated duckweed and stabilization pond system. Water Research 33(3):615–620 https://doi.org/10.1016/S0043-1354(98)00270-X

    Google Scholar 

  • Van Hoeck A, Horemans N, Nauts R, Van Hees M, Vandenhove H, Blust R (2017) Lemna minor plants chronically exposed to ionising radiation: RNA-seq analysis indicates a dose rate dependent shift from acclimation to survival strategies. Plant Sci 257:84–95

    Google Scholar 

  • Van BH, Men L, Son V, Preston TR (1997) Duckweed (Lemna spp.) as protein supplement in an ensiled cassava root diet for fattening pigs. Livestock Res Rural Dev 9:1–15

    Google Scholar 

  • Vunsh R, Li J, Hanania U, Edelman M, Flaishman M, Perl A, Wisniewski JP, Freyssinet G (2007) High expression of transgene protein in Spirodela. Plant Cell Rep 26:1511–1519

    Article  PubMed  CAS  Google Scholar 

  • Walsh G (2014) Biopharmaceutical benchmarks 2014. Nat Biotechnol 32(10):992–1002

    Article  PubMed  CAS  Google Scholar 

  • Walsh G (2018) Biopharmaceutical benchmarks 2018. Nat Biotechnol 36(12):1136–1145. https://doi.org/10.1038/nbt.4305

    Article  CAS  PubMed  Google Scholar 

  • Wang Y (2016) Callus induction and frond regeneration in Spirodela polyrhiza. Czech J Genet Plant Breed 52:114–119

    Article  CAS  Google Scholar 

  • Wang W, Li R, Zhu Q, Tang X, Zhao Q (2016) Transcriptomic and physiological analysis of common duckweed Lemna minor responses to NH4(+) toxicity. BMC Plant Biol 16:92. https://doi.org/10.1186/s12870-016-0774-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wayne AP, Thorne RF (1984) The genus Wolffia (Lemnaceae) in California. Madrono 31(3):171–179

    Google Scholar 

  • Wolff P (1992) Les lentilles d’eau de l’Alsace. Bull Assoc Amis Jard Bot Col de Saveme, 60eanniversaire 1932/1992, pp 25–33

    Google Scholar 

  • Woodard SL, Wilken LR, Barros GO, White SG, Nikolov ZL (2009) Evaluation of monoclonal antibody and phenolic extraction from transgenic Lemna for purification process development. Biotechnol Bioeng 104(3):562–571. https://doi.org/10.1002/bit.22428

    Article  PubMed  CAS  Google Scholar 

  • Xu J, Cui W, Cheng JJ, Stomp A-M (2012) Growing Spirodela polyrrhiza in swine wastewater for the production of animal feed and fuel ethanol: a pilot study. Clean (Weinh) 40:760–765

    CAS  Google Scholar 

  • Xu J, Towler M, Weathers PJ (2016) Platforms for plant-based protein production. In: Pavlov B (ed) Bioprocessing of plant in vitro systems, reference series in phytochemistry. Springer, pp 1–40. https://doi.org/10.1007/978-3-319-32004-5_14-1

  • Yamamoto YT, Rajbhandari N, Lin XH, Bergmann BA, Nishimura Y, Stomp AM (2001) Genetic transformation of duckweed Lemna gibba and Lemna minor. In Vitro Cell Dev Biol Plant 37:349–353

    Article  CAS  Google Scholar 

  • Yang JJ, Li GJ, Hu SQ, Bishopp A, Heenatigala PPM, Kumar S, Duan PF, Yao L, Hou H (2018) A protocol for efficient callus induction and stable transformation of Spirodela polyrhiza (L.) Schleiden using Agrobacterium tumefaciens. Aquat Bot 151:80–86

    Article  Google Scholar 

  • Yao D, Zhang L, Wu PL, Gu XL, Chen YF, Wang LX, Huang XY (2015) Clinical and misdiagnosed analysis of primary pulmonary lymphoma: a retrospective study. BMC Cancer 18:281. https://doi.org/10.1186/s12885-018-4184-1

    Article  Google Scholar 

  • Zhang Y, Hu Y, Yang B, Ma F, Lu P, Li L, Wan C, Rayner S, Chen C (2010) Duckweed (Lemna minor) as a model plant system for the study of human microbial pathogenesis. PLoS ONE 5(10):e13527. https://doi.org/10.1371/journal.pone.0013527

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao H, Appenroth KJ, Landesman L, Salmean AA, Lam E (2012) Duckweed rising at Chengdu: summary of the 1st international conference on duckweed application and research. Plant Mol Biol 78:627–632

    Article  PubMed  CAS  Google Scholar 

  • Zhao Y, Fang Y, Jin Y, Huang J, Bao S, Fu T, He Z, Wang F, Wang M, Zhao H (2015) Pilot-scale comparison of four duckweed strains from different genera for potential application in nutrient recovery from wastewater and valuable biomass production. Plant Biol 17:82–90

    Article  PubMed  CAS  Google Scholar 

  • Ziegler P, Adelmann K, Zimmer S, Schmidt C, Appenroth KJ (2015) Relative in vitro growth rates of duckweeds (Lemnaceae) – the most rapidly growing higher plants. Plant Biol 17(1):33–41

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Russian Science Foundation Grant no. 19-74-00010.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khvatkov, P., Firsov, A., Mitiouchkina, T., Chernobrovkina, M., Dolgov, S. (2021). Duckweeds for the Production of Therapeutic Proteins. In: Malik, S. (eds) Exploring Plant Cells for the Production of Compounds of Interest. Springer, Cham. https://doi.org/10.1007/978-3-030-58271-5_5

Download citation

Publish with us

Policies and ethics